Title
Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization
Document Type
Article
Publication Date
8-20-2016
Abstract
Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel.
Publication Source (Journal or Book title)
Carbohydrate polymers
First Page
155
Last Page
164
Recommended Citation
Yue, Y., Han, J., Han, G., French, A. D., Qi, Y., & Wu, Q. (2016). Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydrate polymers, 147, 155-164. https://doi.org/10.1016/j.carbpol.2016.04.005