Title
Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology
Document Type
Article
Publication Date
6-1-2019
Abstract
The interest in the modification of cellulose nanocrystals (CNCs) lies in the potential to homogenously disperse CNCs in hydrophobic polymer matrices and to promote interfacial adhesion. In this work, poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA) were grafted onto CNCs, thereby imparting their hydrophobic traits. The successful grafting modification led to the increased thermal stability of modified CNCs (MCNCs), and the hydrophobic surface modification was integrated with crystalline structure and morphology of CNCs. The nanocomposites with 7 wt% MCNCs/PBA-co-PMMA had an increase in Young's modulus of >25-fold and in tensile strength at about 3 times compared to these of neat PBA-co-PMMA copolymer. In addition, a micro-phase separated morphology (PBA soft domains, and PMMA and CNC hard domains) of MCNCs/PBA-co-PMMA nanocomposites was observed. The large increase in the storage moduli (glass transition temperatures) and organized morphology of MCNCs/PBA-co-PMMA nanocomposites also elucidated the relationship between mechanical properties and micro-phase separated morphology. Therefore, the MCNCs are effective reinforcing agents for the PBA-co-PMMA thermoplastic elastomers, opening up opportunities for their wide-spread applications in polymer composites.
Publication Source (Journal or Book title)
International journal of biological macromolecules
First Page
685
Last Page
694
Recommended Citation
Zhang, J., Zhang, X., Li, M., Dong, J., Lee, S., Cheng, H. N., Lei, T., & Wu, Q. (2019). Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology. International journal of biological macromolecules, 130, 685-694. https://doi.org/10.1016/j.ijbiomac.2019.02.159