Title
Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles
Document Type
Article
Publication Date
7-6-2010
Abstract
Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100mg PLGA, 15mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mgml-1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 0.002mgml-1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 5.6% after 96h. © 2010 IOP Publishing Ltd.
Publication Source (Journal or Book title)
Nanotechnology
Recommended Citation
Ganea, G., Fakayode, S., Losso, J., Van Nostrum, C., Sabliov, C., & Warner, I. (2010). Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles. Nanotechnology, 21 (28) https://doi.org/10.1088/0957-4484/21/28/285104