Document Type

Article

Publication Date

12-1-2005

Abstract

The outer mitochondrial membrane isoform of mammalian cytochrome b 5 (OM b5) is much less prone to lose heme than the microsomal isoform (Mc b5), with a conserved difference at position 71 (leucine versus serine) playing a major role. We replaced Ser71 in Mc b 5 with Leu, with the prediction that it would retard heme loss by diminishing polypeptide expansion accompanying rupture of the histidine to iron bonds. The strategy was partially successful in that it slowed dissociation of heme from its less stable orientation in bMc b5 (B). Heme dissociation from orientation A was accelerated to a similar extent, however, apparently owing to increased binding pocket dynamic mobility related to steric strain. A second mutation (L32I) guided by results of previous comparative studies of Mc and OM b5s diminished the steric strain, but much greater relief was achieved by replacing heme with iron deuteroporphyrin IX (FeDPIX). Indeed, the stability of the McS71L b5 FeDPIX complex is similar to that of the FeDPIX complex of OM b5. The results suggest that maximizing heme binding pocket compactness in the apo state is a useful general strategy for increasing the stability of engineered or designed proteins. © The Author 2005. Published by Oxford University Press. All rights reserved.

Publication Source (Journal or Book title)

Protein Engineering, Design and Selection

First Page

571

Last Page

579

COinS