Document Type
Article
Publication Date
6-1-2009
Abstract
Variable selection pressures across heterogeneous landscapes can lead to local adaptation of populations. The extent of local adaptation depends on the interplay between natural selection and gene flow, but the nature of this relationship is complex. Gene flow can constrain local adaptation by eroding differentiation driven by natural selection, or local adaptation can itself constrain gene flow through selection against maladapted immigrants. Here we test for evidence that natural selection constrains gene flow among populations of a widespread passerine bird (Zonotrichia capensis) that are distributed along an elevational gradient in the Peruvian Andes. Using multilocus sequences and microsatellites screened in 142 individuals collected along a series of replicate transects, we found that mitochondrial gene flow was significantly reduced along elevational transects relative to latitudinal control transects. Nuclear gene flow, however, was not similarly reduced. Clines in mitochondrial haplotype frequency were strongly associated with transitions in environmental variables along the elevational transects, but this association was not observed for the nuclear markers. These results suggest that natural selection constrains mitochondrial gene flow along elevational gradients and that the mitonuclear discrepancy may be due to local adaptation of mitochondrial haplotypes. © 2009 The Society for the Study of Evolution.
Publication Source (Journal or Book title)
Evolution
First Page
1593
Last Page
1605
Recommended Citation
Cheviron, Z., & Brumfield, R. (2009). Migration-selection balance and local adaptation of mitochondrial haplotypes in Rufous-Collared Sparrows (Zonotrichia Capensis) along an elevational gradient. Evolution, 63 (6), 1593-1605. https://doi.org/10.1111/j.1558-5646.2009.00644.x