Title
Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase
Document Type
Article
Publication Date
1-1-2020
Abstract
Antimicrobial resistance is a growing global health and economic concern. Current antimicrobial agents are becoming less effective against common bacterial infections. We previously identified pyrrolocins A and C, which showed activity against a variety of Gram-positive bacteria. Structurally similar compounds, known as pyrrolidinediones (e.g., TA-289, equisetin), also display antibacterial activity. However, the mechanism of action of these compounds against bacteria was undetermined. Here, we show that pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase (ACC), the first step in fatty acid synthesis. We used transcriptomic data, metabolomic analysis, fatty acid rescue and acetate incorporation experiments to show that a major mechanism of action of the pyrrolidinediones is inhibition of fatty acid biosynthesis, identifying ACC as the probable molecular target. This hypothesis was further supported using purified proteins, demonstrating that biotin carboxylase is the inhibited component of ACC. There are few known antibiotics that target this pathway and, therefore, we believe that these compounds may provide the basis for alternatives to current antimicrobial therapy.
Publication Source (Journal or Book title)
PloS one
First Page
e0233485
Recommended Citation
Larson, E. C., Lim, A. L., Pond, C. D., Craft, M., Čavužić, M., Waldrop, G. L., Schmidt, E. W., & Barrows, L. R. (2020). Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase. PloS one, 15 (5), e0233485. https://doi.org/10.1371/journal.pone.0233485