Document Type

Article

Publication Date

12-2-2002

Abstract

CP43, a component of Photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbC gene. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII characteristics including lower oxygen-evolving activity, fewer assembled reaction centers, higher sensitivity to photoinactivation, etc. [Biochemistry 38 (1999) 1582]. Additionally, it was determined that the mutant exhibited an enhanced stability of its S2 state. Recently, we observed a significant chloride effect under chloride-limiting conditions. The mutant essentially lost the ability to grow photoautotrophically, assembled fewer fully functional PSII reaction centers and exhibited a very low rate of oxygen evolution. Thus, the observed phenotype of this mutation is very similar to that observed for the psbV mutant, which lacks cytochrome c550 (Biochemistry 37 (1998) 1551). A His-tagged version of the R305S mutant was produced to facilitate the isolation of PSII particles. These particles were analyzed for the presence of cytochrome c550. Reduced minus oxidized difference spectroscopy and chemiluminescence examination of Western blots indicated that cytochrome c550 was absent in these PSII particles. Whole cell extracts from the R305S mutant, however, contained a similar amount of cytochrome c550 to that observed in the control strain. These results indicate that the mutation R305S in CP43 prevents the strong association of cytochrome c550 with the PSII core complex. We hypothesize that this residue is involved in the formation of the binding domain for the cytochrome. © 2002 Elsevier Science B.V. All rights reserved.

Publication Source (Journal or Book title)

Biochimica et Biophysica Acta - Bioenergetics

First Page

92

Last Page

96

COinS