Document Type
Article
Publication Date
3-5-1999
Abstract
A primary heparin-binding site in vitronectin has been localized to a cluster of cationic residues near the C terminus of the protein. More recently, secondary binding sites have been proposed. In order to investigate whether the binding site originally identified on vitronectin functions as an exclusive and independent heparin-hinding domain, solution binding methods have been used in combination with MR and recombinant approaches to evaluate ligand binding to the primary site. Evaluation of the ionic strength dependence of heparin binding to vitronectin according to classical linkage theory indicates that a single ionic bond is prominent. It had been previously shown that chemical modification of vitronectin using an arginine- reactive probe results in a significant reduction in heparin binding (Gibson, A., Baburaj, K., Day, D. E., Verhamme, I., Shore, J. D., and Peterson, C. B. (1997) J. Biol. Chem. 272, 5112-5121). The label has now been localized to arginine residues within the cyanogen bromide fragment-(341-380) that contains the primary heparin-binding site on vitronectin. One- and two- dimensional NMR on model peptides based on this primary heparin-binding site indicate that an arginine residue participates in the ionic interaction and that other nonionic interactions may be involved in forming a complex with heparin. A recombinant polypeptide corresponding to the C-terminal 129 amino acids of vitronectin exhibits heparin-binding affinity that is comparable to that of full-length vitronectin and is equally effective at neutralizing heparin anticoagulant activity. Results from this broad experimental approach argue that the behavior of the primary site is sufficient to account for the heparin binding activity of vitronectin and support an exposed orientation for the site in the structure of the native protein.
Publication Source (Journal or Book title)
Journal of Biological Chemistry
First Page
6432
Last Page
6442
Recommended Citation
Gibson, A., Lamerdin, J., Zhuang, P., Baburaj, K., Serpersu, E., & Peterson, C. (1999). Orientation of heparin-binding sites in native vitronectin. Analyses of ligand binding to the primary glycosaminoglycan-binding site indicate that putative secondary sites are not functional. Journal of Biological Chemistry, 274 (10), 6432-6442. https://doi.org/10.1074/jbc.274.10.6432