Document Type
Article
Publication Date
1-1-2006
Abstract
© 2006 Springer. All Rights Reserved. Phytochromes play critical roles in monitoring light quantity, quality, and periodicity in plants and they relay this photosensory information to a large number of signaling pathways that regulate plant growth and development. Given these complex functions, it is not surprising that the phytochrome apoproteins are encoded by small multigene families and that different forms of phytochrome regulate different aspects of photomorphogenesis. Over the course of the last decade, progress has been made in defining the number, molecular properties, and biological activities of the photoreceptors that constitute a plant R/FR sensing system. This chapter summarizes our current understanding of the structure of the genes that encode the phytochrome apoproteins (the PHY genes), the expression patterns of those genes, the nature of the phytochrome apoprotein family, and PHY gene evolution in seed plants. Phytochrome was discovered and its basic photochemical properties were first described through physiological studies of light-sensitive seed germination and photoperiodic effects on flowering (Borthwick, et al., 1948, Borthwick, et al., 1952). The pigment itself was initially isolated from extracts of dark-grown (etiolated) plant tissue in 1959 (Butler, et al., 1959), but it was not until much later that phytochrome was purified to homogeneity in an undegraded form (Vierstra and Quail, 1983). DNA sequences of gene and cDNA clones for oat etiolated-tissue spectroscopically in planta and purified in its native form, this dark-tissue phytochrome (now called phyA) remains the most completely biochemically and spectroscopically characterized form of the receptor. At various times throughout the first 40 years of the study of the abundant etiolated-tissue phytochrome, evidence for the presence and activity of additional forms of phytochrome, often referred to as " green-tissue" or " light-stable" phytochromes, was obtained. Initially, in physiological experiments, it was sometimes not possible to correlate specific in vivo phytochrome activities with the phytochrome provided the first complete descriptions of the apoprotein (Hershey et al., 1985). Because it accumulates to levels that permit it to be assayed known spectroscopic properties of the molecule. Later, direct evidence for multiple species of phytochrome in plants and in plant extracts was obtained using both spectroscopic and immunochemical methods (reviewed in Pratt, 1995). The molecular identities of these additional phytochrome forms were ultimately deduced from cDNA clones that were isolated by nucleic acid similarity to etiolated-tissue phytochrome sequences (Sharrock and Quail, 1989). More recently, analysis of a large number of complete and partial PHY gene or cDNA sequences from a broad sampling of plant phylogenetic groups and sequencing of several plant genomes have resulted in a much clearer and more general picture of what constitutes a higher plant R/FR photoreceptor family. It is likely that the major types of long-wavelength photosensing pigments have now been identified and the challenge that lies ahead is to understand how the signalling mechanisms, expression patterns, and interactions of these molecules contribute to plant responses to the R/FR environment. Extending the investigation of phytochrome gene families and their functions to additional angiosperm and gymnosperm genera will be an integral component of this effort and of our ability to utilize this growing understanding of phytochrome function to modify the agricultural properties of plants and to better understand the history of land plants.
Publication Source (Journal or Book title)
Photomorphogenesis in Plants and Bacteria
First Page
99
Last Page
129
Recommended Citation
Sharrock, R., & Mathews, S. (2006). Phytochrome genes in higher plants: Structure,expression, and evolution. Photomorphogenesis in Plants and Bacteria, 99-129. https://doi.org/10.1007/1-4020-3811-9_7