Document Type
Article
Publication Date
7-28-2015
Abstract
© 2015 Macmillan Publishers Limited. All rights reserved. Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.
Publication Source (Journal or Book title)
Nature Communications
Recommended Citation
Li, F., Melkonian, M., Rothfels, C., Villarreal, J., Stevenson, D., Graham, S., Wong, G., Pryer, K., & Mathews, S. (2015). Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nature Communications, 6 https://doi.org/10.1038/ncomms8852