Document Type

Article

Publication Date

1-1-1996

Abstract

Diffusive gas transport at high water contents and physiological water stress at low water contents limited atmospheric methane consumption rates during experimental manipulations of soil water content and water potential. Maximum rates of atmospheric methane consumption occurred at a soil water content of 25% (grams per gram [dry weight]) and a water potential of about - 0.2 MPa. In contrast, uptake rates were highest at a water content of 38% and a water potential of -0.03 MPa when methane was initially present at 200 ppm. Uptake rates of atmospheric and elevated methane decreased when water potentials were reduced by adding either ionic or nonionic solutes to soils with a fixed water content. Uptake rates during these manipulations were lower when sodium chloride or potassium chloride was used to adjust water potential rather than sucrose. The response of methane consumption by soils to water potential was somewhat less pronounced than the response of methanotrophic cultures (e.g., Methylosinus trichosporium OB3b, Methylomonas rubra [= M. methanica], an isolate from a freshwater peat, and an isolate from an intertidal marine mudflat). However, unlike soils, methanotrophic cultures exhibited a stronger adverse response to nonionic solutes than to sodium chloride.

Publication Source (Journal or Book title)

Applied and Environmental Microbiology

First Page

3203

Last Page

3209

COinS