Document Type
Article
Publication Date
4-1-2007
Abstract
The distributions of bacterial form IA and form IC ribulose-1,5- bisphosphate carboxylase/oxygenase (RuBisCO) were investigated using Lowes Cove intertidal mudflat and Damariscotta Lake littoral sediments by PCR amplification of 492-495 bp fragments of the large subunit RuBisCO gene, cbbL. Genomic extracts for amplification were obtained from lake surface (upper 2 mm), mudflat surface (upper 2 mm), subsurface (5-7 cm), and soft-shell clam (Mya arenaria) burrow-wall sediments, as well as from a sulfide-oxidizing mat. Phylogenetic analyses of cbbL clone libraries revealed that Lowes Cove sediments were dominated by form IA cbbL-containing sequences most closely related to cbbL genes of sulfur-oxidizing bacteria or sulfide-oxidizing mats. In contrast, Damariscotta Lake cbbL clones contained primarily form IC cbbL sequences, which typify aerobic CO- and hydrogen-oxidizing facultative chemolithotrophs. Statistical analyses supported clear differentiation of intertidal and lake chemolithotroph communities, and provided evidence for some differentiation among intertidal communities. amova and libshuff analyses of Lowes Cove libraries suggested that M. arenaria burrow-wall sediments did not harbour distinct communities compared with surface and subsurface sediments, but that surface and subsurface libraries displayed moderate differences. The results collectively support a conceptual model in which the relative distribution of form IA- and IC-containing bacterial chemolithotrophs depends on sulfide availability, which could reflect the role of sulfate reduction in sediment organic matter metabolism, or the presence of geothermal sulfide sources. © 2007 Federation of European Microbiological Societies.
Publication Source (Journal or Book title)
FEMS Microbiology Ecology
First Page
113
Last Page
125
Recommended Citation
Nigro, L., & King, G. (2007). Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1,5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiology Ecology, 60 (1), 113-125. https://doi.org/10.1111/j.1574-6941.2007.00272.x