Local adaptation in marine invertebrates

Eric Sanford, Bodega Marine Laboratory
Morgan W. Kelly, Bodega Marine Laboratory

Abstract

Local adaptation in the sea was regarded historically as a rare phenomenon that was limited to a handful of species with exceptionally low dispersal potential. However, a growing body of experimental studies indicates that adaptive differentiation occurs in numerous marine invertebrates in response to selection imposed by strong gradients (and more complex mosaics) of abiotic and biotic conditions. Moreover, a surprisingly high proportion of the marine invertebrates known or suspected of exhibiting local adaptation are species with planktonic dispersal. Adaptive divergence among populations can occur over a range of spatial scales, including those that are fine-grained (i.e., meters to kilometers), reflecting a balance between scales of gene flow and selection. Addressing the causes and consequences of adaptive genetic differentiation among invertebrate populations promises to advance community ecology, climate change research, and the effective management of marine ecosystems. Copyright © 2011 by Annual Reviews. All rights reserved.