Document Type
Article
Publication Date
1-1-2018
Abstract
© 2018 American Physiological Society. All rights reserved. GABAergic signaling from amacrine cells (ACs) is a fundamental aspect of visual signal processing in the inner retina. We have previously shown that nitric oxide (NO) can elicit release of GABA independently from activation of voltage-gated Ca 2+ channels in cultured retinal ACs. This voltage-independent quantal GABA release relies on a Ca 2+ influx mechanism with pharmacological characteristics consistent with the involvement of the transient receptor potential canonical (TRPC) channels TRPC4 and/or TRPC5. To determine the identity of these channels, we evaluated the ability of NO to elevate dendritic Ca 2+ and to stimulate GABA release from cultured ACs under conditions known to alter the function of TRPC4 and 5. We found that these effects of NO are phospholipase C dependent, have a biphasic dependence on La 3+ , and are unaffected by moderate concentrations of the TRPC4-selective antagonist ML204. Together, these results suggest that NO promotes GABA release by activating TRPC5 channels in AC dendrites. To confirm a role for TRPC5, we knocked down the expression of TRPC5 using CRISPR/Cas9-mediated gene knockdown and found that both the NO-dependent Ca 2+ elevations and increase in GABA release are dependent on the expression of TRPC5. These results demonstrate a novel NO-dependent mechanism for regulating neurotransmitter output from retinal ACs. NEW & NOTEWORTHY Elucidating the mechanisms regulating GABAergic synaptic transmission in the inner retina is key to understanding the flexibility of retinal ganglion cell output. Here, we demonstrate that nitric oxide (NO) can activate a transient receptor potential canonical 5 (TRPC5)-mediated Ca 2+ influx, which is sufficient to drive vesicular GABA release from retinal amacrine cells. This NO-dependent mechanism can bypass the need for depolarization and may have an important role in processing the visual signal by enhancing retinal amacrine cell GABAergic inhibitory output.
Publication Source (Journal or Book title)
Journal of Neurophysiology
First Page
262
Last Page
273
Recommended Citation
Maddox, J., Khorsandi, N., & Gleason, E. (2018). TRPC5 is required for the NO-dependent increase in dendritic Ca 2+ and GABA release from chick retinal amacrine cells. Journal of Neurophysiology, 119 (1), 262-273. https://doi.org/10.1152/jn.00500.2017