Document Type

Article

Publication Date

5-1-2018

Abstract

© 2018 by the Ecological Society of America While it is well established that climate change affects species distributions and abundances, the impacts of climate change on species interactions has not been extensively studied. This is particularly important for specialists whose interactions are tightly linked, such as between the monarch butterfly (Danaus plexippus) and the plant genus Asclepias, on which it depends. We used open-top chambers (OTCs) to increase temperatures in experimental plots and placed either nonnative Asclepias curassavica or native A. incarnata in each plot along with monarch larvae. We found, under current climatic conditions, adult monarchs had higher survival and mass when feeding on A. curassavica. However, under future conditions, monarchs fared much worse on A. curassavica. The decrease in adult survival and mass was associated with increasing cardenolide concentrations under warmer temperatures. Increased temperatures alone reduced monarch forewing length. Cardenolide concentrations in A. curassavica may have transitioned from beneficial to detrimental as temperature increased. Thus, the increasing cardenolide concentrations may have pushed the larvae over a tipping point into an ecological trap; whereby past environmental cues associated with increased fitness give misleading information. Given the ubiquity of specialist plant–herbivore interactions, the potential for such ecological traps to emerge as temperatures increase may have far-reaching consequences.

Publication Source (Journal or Book title)

Ecology

First Page

1031

Last Page

1038

COinS