Document Type

Article

Publication Date

2-20-2009

Abstract

The Escherichia coli DNA damage-inducible protein DinG, a member of the superfamily 2 DNA helicases, has been implicated in the nucleotide excision repair and recombinational DNA repair pathways. Combining UV-visible absorption, EPR, and enzyme activity measurements, we demonstrate here that E. coli DinG contains a redox-active [4Fe-4S] cluster with a mid-point redox potential (Em) of -390 ± 23 mV (pH 8.0) and that reduction of the [4Fe-4S] cluster reversibly switches off the DinG helicase activity. Unlike the [4Fe-4S] cluster in E. coli dihydroxyacid dehydratase, the DinG [4Fe-4S] cluster is stable, and the enzyme remains fully active after exposure to 100-fold excess of hydrogen peroxide, indicating that DinG could be functional under oxidative stress conditions. However, the DinG [4Fe-4S] cluster can be efficiently modified by nitric oxide (NO), forming the DinG-bound dinitrosyl iron complex with the concomitant inactivation of helicase activity in vitro and in vivo. Reassembly of the [4Fe-4S] cluster in NO-modified DinG restores helicase activity, indicating that the iron-sulfur cluster in DinG is the primary target of NO cytotoxicity. The results led us to propose that the iron-sulfur cluster in DinG may act as a sensor of intracellular redox potential to modulate its helicase activity and that modification of the iron-sulfur cluster in DinG and likely in other DNA repair enzymes by NO may contribute to NO-mediated genomic instability. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Publication Source (Journal or Book title)

Journal of Biological Chemistry

First Page

4829

Last Page

4835

COinS