Title
Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories
Document Type
Article
Publication Date
2-1-2022
Abstract
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control. However, prototyping of microfabricated devices (microdevices) traditionally relies on photolithography techniques that are costly, time intensive, and accessible only through specialized engineering laboratories. Although resin 3-D printing has been introduced into the microfabrication domain, existing publications focus on customized or high-cost (>thousands of USD) printers. The goal of this report was to identify and call attention to the emerging opportunities to support innovation in microfabrication by use of low-cost ( < USD 350) resin 3-D printing for rapid prototyping. We demonstrate that low-cost mask-based stereolithography (MSLA) 3-D printers with straightforward modifications can provide fabrication quality that approaches traditional photolithography techniques. For example, reliable feature sizes of 20 μm with dimensional discrepancy of < 4% for lateral dimensions and < 5% for vertical dimensions were fabricated with a consumer-level MSLA printers. In addition, alterations made to pre-processing, post-processing, and printer configuration steps improved print quality as demonstrated in objects with sharper edges and smoother surfaces. The prototyping time and cost of resin 3-D printing (3 h with USD 0.5/prototype) were considerably lower than those of traditional photolithography (5 d with USD 80/prototype). With the rapid advance of consumer-grade printers, resin 3-D printing can revolutionize rapid prototyping approaches for microdevices in the near future, facilitating participation in interdisciplinary development of innovative hardware to support germplasm repository development for aquatic species.
Publication Source (Journal or Book title)
Fishes
Recommended Citation
Zuchowicz, N. C., Belgodere, J. A., Liu, Y., Semmes, I., Monroe, W. T., & Tiersch, T. R. (2022). Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories. Fishes, 7 (1) https://doi.org/10.3390/fishes7010049