Document Type
Article
Publication Date
2-5-2009
Abstract
Vesicular stomatitis virus (VSV) has been extensively utilized as a viral vector system for the induction of protective immune responses against a variety of pathogens. We constructed recombinant VSVs specifying either the Indiana or Chandipura virus G glycoprotein and expressing the West Nile virus (WNV) envelope (E) glycoprotein. Mice were intranasally vaccinated using a prime (Indiana)-boost (Chandipura) immunization approach and challenged with the virulent WNV-LSU-AR01. Ninety-percent (9 of 10) of the vaccinated mice survived as compared to 10% of the mock-vaccinated mice after WNV lethal challenge. Histopathological examination of brain tissues revealed neuronal necrosis in mock-vaccinated mice but not in vaccinated mice, and vaccinated, but not mock-vaccinated mice developed a strong neutralizing antibody response against WNV. Extensive immunological analysis using polychromatic flow cytometry staining revealed that vaccinated, but not mock-vaccinated mice developed robust cellular immune responses as evidenced by up-regulation of CD4+ CD154+ IFNγ+ T cells in vaccinated, but not mock-vaccinated mice. Similarly, vaccinated mice developed robust E-glycoprotein-specific CD8+ T cell immune responses as evidenced by the presence of a high percentage of CD8+ CD62Llow IFNγ+ cells. In addition, a sizeable population of CD8+ CD69+ cells was detected indicating E-specific activation of mature T cells and CD4+ CD25+ CD127low T regulatory (T reg) cells were down-regulated. These results suggest that VSV-vectored vaccines administered intranasally can efficiently induce protective humoral and cellular immune responses against WNV infections. © 2008.
Publication Source (Journal or Book title)
Vaccine
First Page
893
Last Page
903
Recommended Citation
Iyer, A., Pahar, B., Boudreaux, M., Wakamatsu, N., Roy, A., Chouljenko, V., Baghian, A., Apetrei, C., Marx, P., & Kousoulas, K. (2009). Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent west Nile virus strain LSU-AR01. Vaccine, 27 (6), 893-903. https://doi.org/10.1016/j.vaccine.2008.11.087