Document Type

Article

Publication Date

1-1-1997

Abstract

In this study, an adenine-auxotrophic strain of Edwardsiella ictaluri was constructed and its virulence, tissue persistence, and vaccine efficacy were evaluated. A clone containing the purA gene was isolated from an E. ictaluri genomic library, sequenced, and shown to have an overall sequence identity of 79.3% at the nucleotide level and 85.7% at the amino acid level with the Escherichia coli purA gene. The cloned E. ictaluri purA gene was mutated by deleting a 598-bp segment of the gene and inserting the kanamycin resistance gene from TraP03 into the gap. The ApurA::Km(r) gene was subcloned into the suicide plasmid pGP704, and the resulting plasmid was used to deliver the modified gene into a virulent strain of E. ictaluri by conjugation. Homologous recombination replaced the chromosomal purA gene with the mutated gene to create an adenine-auxotrophic strain (LSU-E2). Compared to wild-type E. ictaluri, LSU-E2 was highly attenuated by the injection, immersion, and oral routes of exposure. By the injection route, LSU-E2 had a 50% lethal dose (LD50) that was greater than 5 logs10 higher than the LD50 for wild-type E. ictaluri. In a tissue persistence study, LSU-E2 was able to invade channel catfish by the immersion route and persist in internal organs for at least 48 h. Channel catfish that were vaccinated with a single immersion dose of LSU-E2 had mortality significantly lower (P < 0.01) following a wild-type E. ictaluri challenge than that of nonvaccinated fish.

Publication Source (Journal or Book title)

Infection and Immunity

First Page

4642

Last Page

4651

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 71
    • Patent Family Citations: 1
  • Usage
    • Downloads: 35
    • Abstract Views: 2
  • Captures
    • Readers: 38
see details

Share

COinS