Freshwater mussels alter fish distributions through habitat modifications at fine spatial scales
Document Type
Article
Publication Date
12-1-2019
Abstract
Aggregations of freshwater mussels create patches that can benefit other organisms through direct habitat alterations or indirect stimulation of trophic resources via nutrient excretion and biodeposition. Spent shells and the shells of living mussels add complexity to benthic environments by providing shelter from predators and increasing habitat heterogeneity. Combined, these factors can increase primary productivity and macroinvertebrate abundance in patches where mussel biomass is high, providing valuable subsidies for some fishes and influencing their distributions. We performed a 12-wk field experiment to test whether fish distributions within mussel beds were most influenced by the presence of subsidies associated with live mussels or the biogenic habitat of shells. We used remote underwater video recordings to quantify fish occurrences at fifty 0.25-m2 experimental enclosures stocked with either live mussels (2-species assemblages), sham mussels (shells filled with sand), or sediment only. The biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by treatment. We detected more fish in live mussel and sham treatments than in the sediment-only treatment but found no difference between live mussel and sham treatments. Thus, habitat provided by mussel shells may be the primary benefit to fishes that co-occur with mussels. Increased spatiotemporal overlap between fish and mussels might strengthen ecosystem effects, such as nutrient cycling, and the role of both fish and mussels in freshwater ecosystems.
Publication Source (Journal or Book title)
Freshwater Science
First Page
702
Last Page
712
Recommended Citation
Hopper, G., Dubose, T., Gido, K., & Vaughn, C. (2019). Freshwater mussels alter fish distributions through habitat modifications at fine spatial scales. Freshwater Science, 38 (4), 702-712. https://doi.org/10.1086/705666