Document Type
Article
Publication Date
6-7-2018
Abstract
According to the uniform-stress principle of stem formation, the amount of leaf area a tree carries and the leverage it exerts on the stem determine the stem dimensions. Within an even-aged monoculture, the leaf area per tree and the leverage placed on the stem are functions of tree density and tree height. The uniform-stress principle presents the means to translate density effects on crown characteristics into stem dimensions and total standing volume. This approach is truly a top-down method of simulating growth tree and stand growth because leaf area and other crown properties must be determined before stem size and taper can be calculated. Each crown property influences either the sail area or the leverage placed on the stem, but the degree to which a specific crown property affects these parameters changes with stand density and height. Leverage is the more complicated of the two variables, being a function of the height to the base of the live crown and the vertical distribution of leaf area. The purpose of this brief review is to summarize the effects of stand density on the height to the base of the live tree and the vertical distribution of leaf area and the various ways these variables have been quantified.
Publication Source (Journal or Book title)
Forests
Recommended Citation
Dean, T. (2018). Neighbor and height effects on crown properties associated with the uniform-stress principle of stem formation. Forests, 9 (6) https://doi.org/10.3390/f9060334