Assessment of suspended sand availability under different flow conditions of the lowermost Mississippi River at Tarbert Landing during 1973-2013

Document Type

Article

Publication Date

1-1-2015

Abstract

Rapid land loss in the Mississippi River Delta Plain has led to intensive efforts by state and federal agencies for finding solutions in coastal land restoration in the past decade. One of the proposed solutions includes diversion of the Mississippi River water into drowning wetland areas. Although a few recent studies have investigated flow-sediment relationships in the Lowermost Mississippi River (LmMR, defined as the 500 km reach from the Old River Control Structure to the river's Gulf outlet), it is unclear how individual sediment fractions behave under varying flow conditions of the river. The information can be especially pertinent because the quantity of coarse sands plays a critical role for the Mississippi-Atchafalaya River deltaic development. In this study, we utilized long-term (1973-2013) records on discharge and sediments at Tarbert Landing of the LmMR to assess sand behavior and availability under different river flow regimes, and extreme sand transport events and their recurrence. We found an average annual sand load (SL) of 27.2 megatonnes (MT) during 1973 and 2013, varying largely from 3.37 to 52.30 MT. For the entire 41-year study period, a total of approximately 1115 MT sand were discharged at Tarbert Landing, half of which occurred during the peak 20% flow events. A combination of intermediate, high and peak flow stages (i.e., river discharge was ≥18,000 cubic meter per second) produced about 71% of the total annual SL within approximately 120 days of a year. Based on the long-term sediment assessment, we predict that the LmMR has a high likelihood to transport 4 to 446 thousand tonnes of sand every day over the next 40 years, during which annual sand loads could reach a maximum of 51.68 MT. Currently, no effective plan is in place to utilize this considerably high sand quantity and we suggest that river engineering and sediment management in the LmMR consider practices of hydrograph-based approach for maximally capturing riverine sediments.

Publication Source (Journal or Book title)

Water (Switzerland)

First Page

7022

Last Page

7044

This document is currently not available here.

Share

COinS