Enantioselective Recognition of Aliphatic Amino Acids by Organoselenium Modified β-Cyclodextrins

Document Type

Article

Publication Date

1-1-1999

Abstract

A series of novel organoselenium modified β-cyclodextrins (CDs) bearing an aromatic group 1-7 have been synthesized by a convenient method in satisfactory yields. Spectrophotometric titrations have been performed in aqueous buffer solution (pH 7.20) at 25.0°C to give the complex stability constants (Ks) and Gibbs free energy change (-ΔG°) for the 1:1 inclusion complexation of the six organoselenium modified β-cyclodextrins with some selected aliphatic amino acids. Inclusion complexation of mono-[6-(naphthylseleno-6-deoxy]-β-cyclodextrin 7 with aliphatic amino acids was too weak to be observed, which is attributable to the stronger self-inclusion of naphthylseleno moiety attached to the primary side of cyclodextrin into the cavity. However, the other modified β-cyclodextrins carrying one arylseleno moiety as a probe for differential UV spectrometry were found to recognize not only the size and shape but also the chirality of amino acids. Among arylseleno CDs 1-6, 3 showed the highest enantioselectivity of 27 for L-Ala over the antipodal D-Ala. The molecular recognition ability and enantioselectivity for amino acids of these seven modified β-cyclodextrins are discussed from the viewpoints of the size/shape-fit concept, substituent effect and the multipoint recognition mechanism. The inclusion complexation of these modified β-cyclodextrins with L/D-amino acids may be more explicitly understood in terms of the complementary geometrical relationship and the induced-fit interaction between the host and the guest.

Publication Source (Journal or Book title)

Supramolecular Chemistry

First Page

173

Last Page

184

This document is currently not available here.

Share

COinS