Stability of cultured dental follicle cells

Document Type


Publication Date



Because the dental follicle is required for tooth eruption, establishment of dental follicle cell (DFC) lines is needed for experimentation to determine how the cells regulate eruption. Thus, it is critical that the follicle cells in culture remain stable and neither become transformed nor differentiate. To determine the stability of rat DFC cultures in terms of exhibiting contact inhibition of growth when confluent (no transformation), DFC at different passages were analysed using flow cytometry. Gene expression of cyclin E was determined by reverse transcription polymerase chain reaction as a further method to determine if growth was occurring when the cells were confluent. Alkaline phosphatase and von Kossa staining were also performed as a means of determining stability in terms of differentiation; that is, are the DFC maintaining their phenotype or are they differentiating into osteoblasts and osteocytes? After plating cells of a given passage, they initially underwent a rapid phase of growth with 30-40% of the cells in S, G(2) and M (dividing track) as determined by flow cytometry. The number of such cells declined to only 7-15% at preconfluency. At late confluency, only 2 and 5% of the cells were in the dividing track in passages 6 and 9, respectively, but in passage 12 this had risen to 15%. For a given passage of cells, cyclin E gene expression significantly declined in late confluency as compared to the early growth phase. However, in passage 12, the gene expression of cyclin E at late confluency was higher than the expression at late confluency in passage 6. Thus, the DFC were remarkably stable through passage 9, but by passage 12 it appeared that a small percentage of the cells had become transformed and had lost their contact inhibition growth properties. Alkaline phosphatase and von Kossa staining were negative for all passages, suggesting that the cells remained stable in terms of differentiation and did not differentiate into either osteoblasts or osteocytes.

Publication Source (Journal or Book title)

Cell proliferation

First Page


Last Page


This document is currently not available here.