Bovine herpesvirus type 1 (BHV-1) mutant lacking U(L)49.5 luminal domain residues 30-32 and cytoplasmic tail residues 80-96 induces more rapid onset of virus neutralizing antibody and cellular immune responses in calves than the wild-type strain Cooper

Huiyong Wei, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
Junyun He
Daniel B. Paulsen
Shafiqul I. Chowdhury


Bovine herpesvirus type 1 (BHV-1) envelope protein U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. Earlier, we have constructed a BHV-1U(L)49.5Δ30-32 CT-null virus and determined that in the infected cells, TAP inhibition and MHC-I down regulation properties of the virus are abolished. In this study, we compared the pathogenicity and immune responses in calves infected with BHV-1U(L)49.5Δ30-32 CT-null and BHV-1 wt viruses. Following primary infection, both BHV-1 wt and BHV-1U(L)49.5Δ30-32 CT-null virus replicated in the nasal epithelium with very similar yields. BHV-1 antigen-specific CD8+ T cell proliferation as well as CD8+ T cell cytotoxicity in calves infected with the BHV-1U(L)49.5Δ30-32 CT-null virus peaked by 7 dpi (P<0.05) which is 7 days earlier than that of BHV-1 wt-infected calves. Further, virus neutralizing antibody (VN Ab) titers and IFN-γ producing peripheral blood mononuclear cells (PBMCs) in the U(L)49.5 mutant virus-infected calves, also peaked 7 days (IFN-γ; P<0.05) and 14 days (VN Ab; P<0.05) earlier, respectively. Therefore, relative to wt in the BHV-1U(L)49.5 mutant virus-infected calves, primary neutralizing antibody and cellular immune responses were induced significantly more rapidly.