Wavelet-ANFIS models for forecasting monsoon flows: Case study for the Gandak River (India)

Document Type

Article

Publication Date

1-1-2014

Abstract

WANFIS, a conjunction model of discreet wavelet transform (DWT) and adaptive neuro-fuzzy inference system (ANFIS) was developed for forecasting the current-day flow in a river when only available data are historical flows. Discreet wavelet transform decomposed the observed flow time series (OFTS) into wavelet components which captured useful information on three resolution levels. A smoothened flow time series (SFTS) was formed by filtering out the noise wavelet components and recombining the effective wavelet components. WANFIS model is essentially an ANFIS model with SFTS hydrograph as the input, while ANFIS and autoregression (AR) models, developed for comparison purpose, use OFTS hydrograph as input. For performance evaluation, the developed models were utilized for predicting daily monsoon flows for the Gandak River in Bihar state of India. During monsoon (June–October), this river carries large flows making the entire North Bihar unsafe for habitation or cultivation. Based on various performance indices, it was concluded that WANFIS models simulate the monsoon flows in the Gandak more reliably than ANFIS and AR models. The best performing WANFIS model, with four previous days’ flows as input, predicted the current-day Gandak flows with 80.7% accuracy while ANFIS and AR models predicted it with only 71.8 and 51.2% accuracies.

Publication Source (Journal or Book title)

Water Resources

First Page

574

Last Page

582

This document is currently not available here.

Share

COinS