An electronically-coilimated portable gamma-ray detector for locating environmental radiation sources

Kenneth L. Matthews, Louisiana State University
Blair M. Smith, Louisiana State University
Adam W. Lackie, Louisiana State University
William H. Hill, Louisiana State University
Wei Hsung Wang, Louisiana State University
Michael L. Cherry, Louisiana State University


We are developing a detector system for locating environmental radiation sources. The design emphasizes compact size (ideally hand-held), wide field of view and high detection efficiency, and uses cadmium-zinc-telluride (CZT) detectors and electronic collimation via Compton-scatter detection. The detector design is a 6-sided box with a primary scatter detector on one end. GEANT4 simulations, allowing variations of detector parameters and source energies/locations, provided performance estimates. A partial prototype, using 16×16-pixel 38×38×5-mm3 CZT detectors, was developed and tested. Two methods to calculate source direction in real-time from the Compton scatter data were evaluated: (1) filtered backprojection of cones onto a sphere; (2) intersection with the sphere of bounding boxes circumscribed around the cones. Simulation results of the 6-sided box with the current CZT modules indicated 1-5% of incident gamma rays produce valid direction angles, with an angular resolution of ∼15°. The directional algorithms allowed a FOV (directional error <10°) of approximately ±60°. The direction algorithms converge on a source direction estimate in as few as 100 detected events. With improvements in detector energy and spatial resolution, reasonable performance seems achievable for a range of radioisotopes, e.g., from Am-241 through Co-60.