Status and performance of the CALorimetric Electron Telescope (CALET) on the international space station

O. Adriani, Università degli Studi di Firenze
Y. Akaike, The University of Tokyo
Y. Asaoka, Waseda University
K. Asano, Shibaura Institute of Technology
M. G. Bagliesi, Università degli Studi di Siena
G. Bigongiari, Università degli Studi di Siena
W. R. Binns, Washington University in St. Louis
M. Bongi, Università degli Studi di Firenze
J. H. Buckley, Washington University in St. Louis
A. Cassese, Università degli Studi di Firenze
G. Castellini, Università degli Studi di Firenze
M. L. Cherry, Louisiana State University
G. Collazuol, Università degli Studi di Padova
K. Ebisawa, Japan Aerospace Exploration Agency
V. di Felice, Università degli Studi di Roma "Tor Vergata"
H. Fuke, Japan Aerospace Exploration Agency
T. G. Guzik, Louisiana State University
T. Hamsa, University of Maryland, College Park
N. Hasebe, Waseda University
M. Hareyama, St. Marianna University School of Medicine
K. Hibino, Kanagawa University
M. Ichimura, Hirosaki University
K. Ioka, High Energy Accelerator Research Organization, Tsukuba
M. H. Israel, Washington University in St. Louis
A. Javaid, Louisiana State University
E. Kamioka, Shibaura Institute of Technology
K. Kasahara, Waseda University
Y. Katayose, Yokohama National University
J. Kataoka, Waseda University
R. Kataoka, National Institute of Polar Research
N. Kawanaka, The University of Tokyo
H. Kitamura, National Institute of Radiological Sciences Chiba
T. Kotani, Waseda University


The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.