Intravascular imaging with a storage phosphor detector

Document Type


Publication Date



The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm3 volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 νCi cm-3 activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm-2 were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360° circumference. Spatial resolution was 0.6-1.2 mm FWHM with a readout pixel resolution of 80 νm. The detector is flexible, reusable and easy to handle; it provides virtually real-time imaging. An intravascular imaging detector based on storage phosphor has shown a potential for imaging human coronary artery plaques. The detector provides the sensitivity, spatial resolution, flexibility and short imaging times necessary for clinical applications. Future research will decrease the detector diameter from 2 mm to 1 mm, and will apply the design to in vivo animal experiments. © 2010 Institute of Physics and Engineering in Medicine.

Publication Source (Journal or Book title)

Physics in Medicine and Biology

First Page


Last Page


This document is currently not available here.