Design tools for proton therapy nozzles based on the double-scattering foil technique

Document Type


Publication Date



Proton therapy has been increasing over the past several years, with several new treatment facilities being built in Europe, Japan and the United States. In this work, analytical and Monte Carlo tools were combined to model the passively scattered neurosurgery treatment beamline of the Harvard Cyclotron Laboratory (Cambridge, MA). The predicted three-dimensional dose distributions agree with actual measurements to within 0.1 mm for all quantities considered in central-axis depth-dose curve and to within 2.1 mm for all quantities considered in the absorbed dose cross-field profile. The predicted neutron dose equivalent per therapeutic absorbed dose, HID, was calculated at various locations representing clinically significant anatomical sites. Under typical treatment conditions, the average ratio of predicted-to-measured, HID, is 1.8 in the gonadal region (50 cm from isocentre) and 3.4 in the thyroid region (21 cm from isocentre). The global ratio of predicted-to-measured H/D is 2.6. © The Author 2005. Published by Oxford University Press. All rights reserved.

Publication Source (Journal or Book title)

Radiation Protection Dosimetry

First Page


Last Page


This document is currently not available here.