Document Type


Publication Date



We report a first-principles Wannier function study of the electronic structure of PdTe. Its electronic structure is found to be a broad three-dimensional Fermi surface with highly reduced correlation effects. In addition, the higher filling of the Pd d-shell, its stronger covalency resulting from the closer energy of the Pd d and Te p shells, and the larger crystal field effects of the Pd ion due to its near octahedral coordination, all serve to weaken significantly electronic correlations in the particle-hole (spin, charge, and orbital) channel. In comparison to the Fe chalcogenides, e.g. FeSe, we highlight the essential features (quasi-two-dimensionality, proximity to half-filling, weaker covalency, and higher orbital degeneracy) of Fe-based high-temperature superconductors. © 2013 IOP Publishing Ltd.

Publication Source (Journal or Book title)

Journal of Physics Condensed Matter