Neutron transfer reactions with tin beams and r-process nucleosynthesis

J. A. Cizewski, Rutgers University–New Brunswick
B. Manning, Rutgers University–New Brunswick
K. L. Jones, The University of Tennessee, Knoxville
R. L. Kozub, Tennessee Technological University
S. Ahn, The University of Tennessee, Knoxville
G. Arbanas, Oak Ridge National Laboratory
D. W. Bardayan, ORNL Physics Division
J. C. Blackmon, Louisiana State University
K. Y. Chae, ORNL Physics Division
K. A. Chipps, Colorado School of Mines
S. Hardy, Rutgers University–New Brunswick
R. Hatarik, Rutgers University–New Brunswick
M. E. Howard, Rutgers University–New Brunswick
R. Kapler, The University of Tennessee, Knoxville
J. F. Liang, ORNL Physics Division
M. Matos, Louisiana State University
B. H. Moazen, The University of Tennessee, Knoxville
C. D. Nesaraja, ORNL Physics Division
F. M. Nunes, Michigan State University
P. D. O'Malley, Rutgers University–New Brunswick
S. D. Pain, ORNL Physics Division
W. A. Peters, Oak Ridge Utility District
S. T. Pittman, The University of Tennessee, Knoxville
A. Ratkiewicz, Rutgers University–New Brunswick
K. T. Schmitt, The University of Tennessee, Knoxville
D. Shapira, ORNL Physics Division
M. S. Smith, ORNL Physics Division


Uncertainties in neutron capture rates can affect the predictions of abundances in r-process nucleosynthesis because neutron capture can be important at late times. To probe the direct component of neutron capture reactions, we have recently completed measurements of the neutron transfer (d,p) reaction with beams of 126,128Sn and the stable 124Sn. These studies complete the systematics of (d,p) reactions on neutron-rich even-mass Sn isotopes, following the previous work with 130,132Sn beams. These Sn(d,p) studies are used to map the evolution of shell structure away from stability and to deduce direct neutron capture rates. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.