Document Type


Publication Date



This review discusses recent experimental and theoretical analyses of high-harmonic spectroscopy in small molecules, with the aim of characterizing charge migration. We discuss the formulation of molecular high-harmonic spectra followed by methods to extract molecular-target-specific information, both in experiments and ab initio simulations. We present measured and simulated high-harmonic spectra from carbon dioxide and carbonyl sulfide to illustrate the necessity for multidimensional analyses for high-harmonic spectroscopies that include both the spectral amplitude and phase. Leveraging these results, we examine how such multidimensional analyses pave the way for the study of charge migration with high-harmonic spectroscopy and illustrate the beneficial role a static molecular feature can play when probing dynamics. Finally, we briefly expand our scope with an outlook on the critical role of integrating theoretical and experimental approaches, beyond just high-harmonic spectroscopy, for the development of versatile harmonic spectroscopic probes of charge migration.

Publication Source (Journal or Book title)

Journal of Molecular Spectroscopy