New exact solutions of the standard pairing model for well-deformed nuclei

Feng Pan, Liaoning Normal University
Ming Xia Xie, Liaoning Normal University
Xin Guan, Liaoning Normal University
Lian Rong Dai, Liaoning Normal University
J. P. Draayer, Louisiana State University


A new step-by-step diagonalization procedure for evaluating exact solutions of the nuclear deformed mean-field plus pairing interaction model is proposed via a simple Bethe ansatz in each step from which the eigenvalues and corresponding eigenstates can be obtained progressively. This new approach draws upon an observation that the original one- plus two-body problem in a k-particle Hilbert subspace can be mapped onto a one-body grand hard-core boson picture that can be solved step by step with a simple Bethe ansatz known from earlier work. Based on this new procedure, it is further shown that the extended pairing model for deformed nuclei [Feng Pan, V. G. Gueorguiev, and J. P. Draayer, Phys. Rev. Lett. 92, 112503 (2004)] is similar to the standard pairing model with the first step approximation, in which only the lowest energy eigenstate of the standard pure pairing interaction part is taken into consideration. Our analysis shows that the standard pairing model with the first step approximation displays similar pair structures of the first few exact low-lying states of the model, which, therefore, provides a link between the two models. © 2009 The American Physical Society.