M. G. Aartsen, The University of Adelaide
M. Ackermann, Deutsches Elektronen-Synchrotron (DESY)
J. Adams, University of Canterbury
J. A. Aguilar, Université de Genève
M. Ahlers, University of Wisconsin-Madison
M. Ahrens, Stockholms universitet
D. Altmann, Friedrich-Alexander-Universität Erlangen-Nürnberg
T. Anderson, Pennsylvania State University
C. Arguelles, University of Wisconsin-Madison
T. C. Arlen, Pennsylvania State University
J. Auffenberg, Rheinisch-Westfälische Technische Hochschule Aachen
X. Bai, South Dakota School of Mines & Technology
S. W. Barwick, University of California, Irvine
V. Baum, Johannes Gutenberg-Universität Mainz
J. J. Beatty, The Ohio State University
J. Becker Tjus, Ruhr-Universitat Bochum
K. H. Becker, Bergische Universität Wuppertal
S. Benzvi, University of Wisconsin-Madison
P. Berghaus, Deutsches Elektronen-Synchrotron (DESY)
D. Berley, University of Maryland, College Park
E. Bernardini, Deutsches Elektronen-Synchrotron (DESY)
A. Bernhard, Technical University of Munich
D. Z. Besson, University of Kansas
G. Binder, University of California, Berkeley
D. Bindig, Bergische Universität Wuppertal
M. Bissok, Rheinisch-Westfälische Technische Hochschule Aachen
E. Blaufuss, University of Maryland, College Park
J. Blumenthal, Rheinisch-Westfälische Technische Hochschule Aachen
D. J. Boersma, Uppsala Universitet
C. Bohm, Stockholms universitet
F. Bos, Ruhr-Universitat Bochum
D. Bose, Sungkyunkwan University
S. Böser, Universität Bonn

Document Type


Publication Date



We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10-2M c2 at ∼150Hz with ∼60ms duration, and high-energy neutrino emission of 1051erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10-2Mpc-3yr-1. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

Publication Source (Journal or Book title)

Physical Review D - Particles, Fields, Gravitation and Cosmology