Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and Field Applications

Document Type

Article

Publication Date

1-1-2013

Abstract

Based on the enhanced oil recovery (EOR) survey in Oil and Gas Journal (2010), approximately 280,000bbl of oil per day or 6% of US crude oil production was produced by carbon dioxide (CO2) EOR. Just like any other gas injection processes, field CO2 flooding projects suffer from poor sweep efficiency due to early gas breakthrough, unfavorable mobility ratio, reservoir heterogeneity, viscous fingering and channeling, and gravity segregation. Many of these problems are believed to be alleviated or overcome by foaming the injected CO2. Since the 1970s, CO2-foam flooding has been used as a commercially viable method for EOR processes. Foams, defined as a mixture of internal gas phase in a continuous external liquid phase containing surfactant molecules, can improve sweep efficiency significantly by reducing gas mobility, especially in the reservoirs with a high level of geological heterogeneity. This chapter consists of three main parts: the first part (Section 2.1) deals with fundamentals on foams in porous media and recent advances in this field of research, including three foam states (weak-foam, strong-foam, and intermediate states) and two steady-state flow regimes of strong foams; the second part (Section 2.2) overviews field examples of foam-assisted CO2-EOR processes; and the third part (Section 2.3) covers typical field injection and production responses if CO2-foam pilot or field-scale treatments are successful.

Publication Source (Journal or Book title)

Enhanced Oil Recovery Field Case Studies

First Page

23

Last Page

61

This document is currently not available here.

Share

COinS