In-situ control of DNAPL density using polyaphrons

Document Type


Publication Date



Once spilled into soils, dense nonaqueous phase liquids (DNAPLs) such as chlorinated solvents migrate deep into the subsurface because of their high density. Their downward migration typically continues until capillary forces balance gravitational forces or until essentially impermeable strata are reached. Efforts to mobilize the DNAPL for remediation purposes risks driving the contaminants deeper, which has spurred research for modifying buoyancy forces in situ. In this paper, a novel means of controlling the density of a DNAPL phase using polyaphrons is presented. Polyaphrons are a class of high internal phase ratio emulsions (HIPREs) that have unusual properties such as indefinite stability and flow properties through porous media. They provide a means of selectively delivering a light organic phase liquid to the vicinity of the DNAPL phase. Upon destabilization of the polyaphron by a polyvalent cation, the light internal phase mixes with the DNAPL to produce a nonaqueous phase of lower density than the original contaminant. The negative buoyancy of the DNAPL can thus be reversed. This approach holds great promise for manipulating DNAPL densities prior to or during remediation treatments.

Publication Source (Journal or Book title)

Environmental science & technology

First Page


Last Page


This document is currently not available here.