Document Type


Publication Date



I examined four hypotheses about causes for the dramatically high coastal wetland losses (0.86% yr−1) in the northern Gulf of Mexico: an extensive dredged canal and spoil bank network, a decline in sediments in the Mississippi River during the 1950s, Mississippi River navigation and flood protection levees, and salinity changes. Natural factors contributing to these habitat changes include eustatic sea-level rise and geological compaction, which appear to have remained relatively constant this century, although variation does occur. These four hypotheses were tested using data on land-to-water changes in 15-min quadrangle maps inventoried for four intervals between the 1930s and 1990. Land loss rates were directly proportional to changes in wefland hydrology in time and space. A linear regression of the direct losses due to dredging versus the losses due to all other factors (indirect losses) had a zero intercept and a slope that increased with time. The ratio indirect:direct land loss was highest nearest the estuarine entrance. The coastwide patterns of land loss do not appear to be affected by riverine sediment reductions over the last 60 yr. The effects of changes in wetland hydrology from dredging human-made channels and forming dredged spoil banks appear to be the most efficacious hypothesis explaning these dramatic losses. The effects of extensive human-induced changes on this coast have apparently overwhelmed the causal linkages identified in the historical re-constructionist view of deltaic gain and loss that emphasizes the role of mineral sediments. A paradigm shift is therefore proposed that emphasizes a broad ecological view as contrasted to a mostly physical view emphasizing the role of sediment supply in wetland maintenance. In this view, plants are not an ancillary consequence of strictly geological dynamics such as sediment supply but are dominant agents controlling factors relevant to coastal restoration and management efforts.

First Page


Last Page


Included in

Oceanography Commons