Document Type
Article
Publication Date
3-1-2021
Abstract
In this work we estimate the convergence rate for time stepping schemes applied to nonlocal dynamic fracture modeling. Here we use the nonlocal formulation given by the bond based peridynamic equation of motion. We begin by establishing the existence of H2 peridynamic solutions over any finite time interval. For this model the gradients can become large and steep slopes appear and localize when the non-locality of the model tends to zero. In this treatment spatial approximation by finite elements are used. We consider the central-difference scheme for time discretization and linear finite elements for discretization in the spatial variable. The fully discrete scheme is shown to converge to the actual H2 solution in the mean square norm at the rate CtΔt + Csh2=/2. Here h is the mesh size, Δ is the length scale of nonlocal interaction and Δt is the time step. The constants Ct and Cs are independent of Δt, and h. In the absence of nonlinearity a CFL like condition for the energy stability of the central difference time discretization scheme is developed. As an example we consider Plexiglass and compute constants in the a-priori error bound.
Publication Source (Journal or Book title)
Discrete and Continuous Dynamical Systems - Series B
First Page
1675
Last Page
1710
Recommended Citation
Jha, P., & Lipton, R. (2021). Finite element approximation of nonlocal dynamic fracture models. Discrete and Continuous Dynamical Systems - Series B, 26 (3), 1675-1710. https://doi.org/10.3934/dcdsb.2020178