Loos symmetric cones
Document Type
Article
Publication Date
11-1-2019
Abstract
In this paper we consider Loos symmetric spaces on an open cone Ω in the Banach space setting and develop the foundations of a geometric theory based on the (modified) Loos axioms for such cones. In particular we establish exponential and log functions that exhibit many desirable features reminiscent of those of the exponential function from the space of self-adjoint elements to the cone of positive elements in a unital C∗-algebra. We also show that the Thompson metric arises as the distance function for a natural Finsler structure on Ω and its minimal geodesics agree with the geodesics of the spray arising from the Loos structure. We close by showing that some familiar operator inequalities can be derived in this very general setting using the differential and metric geometry of the cone.
Publication Source (Journal or Book title)
Positivity
First Page
1225
Last Page
1243
Recommended Citation
Lawson, J. (2019). Loos symmetric cones. Positivity, 23 (5), 1225-1243. https://doi.org/10.1007/s11117-019-00652-w