Large W k - Or K 3, t -Minors in 3-Connected Graphs

Document Type

Article

Publication Date

6-1-2016

Abstract

There are numerous results bounding the circumference of certain 3-connected graphs. There is no good bound on the size of the largest bond (cocircuit) of a 3-connected graph, however. Oporowski, Oxley, and Thomas (J Combin Theory Ser B 57 (1993), 2, 239-257) proved the following result in 1993. For every positive integer k, there is an integer n=f(k) such that every 3-connected graph with at least n vertices contains a Wk- or K3,k-minor. This result implies that the size of the largest bond in a 3-connected graph grows with the order of the graph. Oporowski et al. obtained a huge function f(k) iteratively. In this article, we first improve the above authors' result and provide a significantly smaller and simpler function f(k). We then use the result to obtain a lower bound for the largest bond of a 3-connected graph by showing that any 3-connected graph on n vertices has a bond of size at least 217logn. In addition, we show the following: Let G be a 3-connected planar or cubic graph on n vertices. Then for any ϵ>0, G has a Wk-minor with k=Ω((logn)1-ϵ), and thus a bond of size at least Ω((logn)1-ϵ).

Publication Source (Journal or Book title)

Journal of Graph Theory

First Page

207

Last Page

217

This document is currently not available here.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 7
  • Usage
    • Abstract Views: 5
  • Captures
    • Readers: 3
see details

Share

COinS