Document Type
Article
Publication Date
9-1-2006
Abstract
Let Mn, m be the space of real n × m matrices which can be identified with the Euclidean space Rn m. We introduce continuous wavelet transforms on Mn, m with a multivalued scaling parameter represented by a positive definite symmetric matrix. These transforms agree with the polar decomposition on Mn, m and coincide with classical ones in the rank-one case m = 1. We prove an analog of Calderón's reproducing formula for L2-functions and obtain explicit inversion formulas for the Riesz potentials and Radon transforms on Mn, m. We also introduce continuous ridgelet transforms associated to matrix planes in Mn, m. An inversion formula for these transforms follows from that for the Radon transform. The new approach makes it possible to reconstruct a function on Rn m from data on a set of planes of zero measure. © 2006 Elsevier Inc. All rights reserved.
Publication Source (Journal or Book title)
Applied and Computational Harmonic Analysis
First Page
182
Last Page
203
Recommended Citation
Ólafsson, G., Ournycheva, E., & Rubin, B. (2006). Higher-rank wavelet transforms, ridgelet transforms, and Radon transforms on the space of matrices. Applied and Computational Harmonic Analysis, 21 (2), 182-203. https://doi.org/10.1016/j.acha.2006.01.002