Rational inversion of the Laplace transform

Document Type


Publication Date



This paper studies new inversion methods for the Laplace transform of vector-valued functions arising from a combination of A-stable rational approximation schemes to the exponential and the shift operator semigroup. Each inversion method is provided in the form of a (finite) linear combination of the Laplace transform of the function and a finite amount of its derivatives. Seven explicit methods arising from A-stable schemes are provided, such as the Backward Euler, RadauIIA, Crank-Nicolson, and Calahan scheme. The main result shows that, if a function has an analytic extension to a sector containing the nonnegative real line, then the error estimate for each method is uniform in time. © 2012 Springer Basel AG (outside the USA).

Publication Source (Journal or Book title)

Journal of Evolution Equations

First Page


Last Page


This document is currently not available here.