Identifier
etd-04062015-115239
Degree
Master of Science in Electrical Engineering (MSEE)
Department
Electrical and Computer Engineering
Document Type
Thesis
Abstract
The thesis presented has four goals: to perform a comprehensive literature review on current neurostimulator technology; to outline the current issues with the state-of-the-art; to provide a neurostimulator design that solves these issues, and to characterize the design and demonstrate its neurostimulation features. The literature review describes the physiology of a neuron, and then proceeds to outline neural interfaces and neurostimulators. The neurostimulator design process is then outlined and current requirements in the field are described. The novel neurostimulator circuit that implements a solution that has wireless capability, passive control, and small size is outlined and characterized. The circuit is demonstrated to operate wirelessly with a resonance-coupled multi-channel implementation, and is shown powering LEDs. The circuit was then fabricated in a miniature implementation which utilized a 10 x 20 x 3 mm&179 antenna, and occupied a volume approximating 1 cm&179. This miniature circuit is used to stimulate frog sciatic nerve and gastrocnemius muscle in vitro. These demonstrations and characterization show the device is capable of neurostimulation, can operate wirelessly, is controlled passively, and can be implemented in a small size, thus solving the aforementioned neurostimulator requirements. Further work in this area is focused on developing an extensive characterization of the device and the wireless power delivery system, optimizing the circuit design, and performing in vivo experiments with restoration of motor control in injured animals. This device shows promise to provide a comprehensive solution to many application-specific problems in neurostimulation, and be a modular addition to larger neural interface systems.
Date
2015
Document Availability at the Time of Submission
Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.
Recommended Citation
Parodi Amaya, Jose Aquiles, "Design and Implementation of a Passive Neurostimulator with Wireless Resonance-Coupled Power Delivery and Demonstration on Frog Sciatic Nerve and Gastrocnemius Muscle" (2015). LSU Master's Theses. 1990.
https://repository.lsu.edu/gradschool_theses/1990
Committee Chair
Choi, Jin-Woo
DOI
10.31390/gradschool_theses.1990