Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Educational Theory, Policy, and Practice

First Advisor

James Wandersee

Second Advisor

Richard Fossey


This research explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th-grade science classroom. This investigation examined the transformation of students' science concepts as they became more proficient in constructing Roundhouse diagrams, what problems students encountered while constructing Roundhouse diagrams, and how choices of iconic images affected their progress in meaningfully learning science concepts as they constructed a series of Roundhouse diagrams. The process of constructing a Roundhouse diagram involved recognizing the learner's relevant existing concepts, evaluating the central concepts for a science lesson and breaking them down into their component parts, reconstructing the learner's conceptual framework by reducing the amount of detail efficiently, reviewing the reconstruction process, and linking each key concept to an iconic image. The researcher collected and analyzed qualitative and quantitative data to determine the effectiveness of the Roundhouse diagram. Data included field notes, observations, students' responses to Roundhouse diagram worksheets, students' perceptions from evaluation sheets, students' mastery of technique sheets, tapes and transcripts of students' interviews, student-constructed Roundhouse diagrams, and documentation of science grades both pre- and post-Roundhouse diagramming. This multiple case study focused on six students although the whole class was used for statistical purposes. Stratified purposeful sampling was used to facilitate comparisons as well as week-by-week comparisons of students' science grades and Roundhouse diagram scores to gain additional insight into the effectiveness of the Roundhouse diagramming method. Through participation in constructing a series of Roundhouse diagrams, middle school students gained a greater understanding of science concepts. Roundhouse diagram scores improved over time during the 10-week Roundhouse diagramming session. Students' science scores improved as they became more proficient in constructing the Roundhouse diagrams. The major problems associated with constructing Roundhouse diagrams were extracting the main ideas from the textbook, understanding science concepts in terms of whole/part relationships, paraphrasing sentences effectively, and sequencing events in an accurate order. A positive relationship existed for the case study group based on students' choices and drawings of iconic images and the meaningful learning of science concepts.