Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Electrical and Computer Engineering

First Advisor

Ahmed El-Amawy


Hypercube structures have received a great deal of attention due to the attractive properties inherent to their topology. Parallel algorithms targeted at this topology can be partitioned into many tasks, each of which running on one node processor. A high degree of performance is achievable by running every task individually and concurrently on each node processor available in the hypercube. Nevertheless, the performance can be greatly degraded if the node processors spend much time just communicating with one another. The goal in designing hypercubes is, therefore, to achieve a high ratio of computation time to communication time. The dissertation addresses primarily ways to enhance system performance by minimizing the communication time among processors. The need for improving the performance of hypercube networks is clearly explained. Three novel topologies related to hypercubes with improved performance are proposed and analyzed. Firstly, the Bridged Hypercube (BHC) is introduced. It is shown that this design is remarkably more efficient and cost-effective than the standard hypercube due to its low diameter. Basic routing algorithms such as one to one and broadcasting are developed for the BHC and proven optimal. Shortcomings of the BHC such as its asymmetry and limited application are clearly discussed. The Folded Hypercube (FHC), a symmetric network with low diameter and low degree of the node, is introduced. This new topology is shown to support highly efficient communications among the processors. For the FHC, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional hypercube. For both BHC and FHC, network parameters such as average distance, message traffic density, and communication delay are derived and comparatively analyzed. Lastly, to enhance the fault tolerance of the hypercube, a new design called Fault Tolerant Hypercube (FTH) is proposed. The FTH is shown to exhibit a graceful degradation in performance with the existence of faults. Probabilistic models based on Markov chain are employed to characterize the fault tolerance of the FTH. The results are verified by Monte Carlo simulation. The most attractive feature of all new topologies is the asymptotically zero overhead associated with them. The designs are simple and implementable. These designs can lead themselves to many parallel processing applications requiring high degree of performance.