Doctor of Philosophy (PhD)



Document Type



The matroid structure theory of Geelen, Gerards, and Whittle has led to a hypothesis that a highly connected member of a minor-closed class of matroids representable over a finite field is a mild modification (known as a perturbation) of a frame matroid, the dual of a frame matroid, or a matroid representable over a proper subfield. They introduced the notion of a template to describe these perturbations in more detail. In this dissertation, we determine these templates for various classes and use them to prove results about representability, extremal functions, and excluded minors.

Chapter 1 gives a brief introduction to matroids and matroid structure theory. Chapters 2 and 3 analyze this hypothesis of Geelen, Gerards, and Whittle and propose some refined hypotheses. In Chapter 3, we define frame templates and discuss various notions of template equivalence.

Chapter 4 gives some details on how templates relate to each other. We define a preorder on the set of frame templates over a finite field, and we determine the minimal nontrivial templates with respect to this preorder. We also study in significant depth a specific type of template that is pertinent to many applications. Chapters 5 and 6 apply the results of Chapters 3 and 4 to several subclasses of the binary matroids and the quaternary matroids---those matroids representable over the fields of two and four elements, respectively.

Two of the classes we study in Chapter 5 are the even-cycle matroids and the even-cut matroids. Each of these classes has hundreds of excluded minors. We show that, for highly connected matroids, two or three excluded minors suffice. We also show that Seymour's 1-Flowing Conjecture holds for sufficiently highly connected matroids.

In Chapter 6, we completely characterize the highly connected members of the class of golden-mean matroids and several other closely related classes of quaternary matroids. This leads to a determination of the extremal functions for these classes, verifying a conjecture of Archer for matroids of sufficiently large rank.



Committee Chair

van Zwam, Stefan