Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Document Type



One of the challenges facing the electric vehicle industry today is the selection and design of a suitable in-wheel motor. Permanent Magnet Brushless (PMBL) motor is a good choice for the in-wheel motor because of its lossless excitation, improved efficiency, reduced weight and low maintenance. The PMBL motors can be further classified as Axial-Flux Twin-Rotor (AFTR) and Radial-Flux Twin-Rotor (RFTR) machines.

The objective of this dissertation is to develop a fast method for the selection of appropriate in-wheel motor depending on wheel size. To achieve this, torque equations are developed for a conventional single-rotor cylindrical, twin-rotor axial-flux and twin-rotor radial-flux PMBL motors with slot-less stators based on magnetic circuit theory and the torque ratio for any two motors is expressed as a function of motor diameter and axial length. The theoretical results are verified, on the basis of magnetic field theory, by building the 3-dimensional Finite Element Method (FEM) models of the three types of motors and analyzing them in magnetostatic solver to obtain the average torque of each motor. Later, validation of software is carried out by a prototype single-rotor cylindrical slotted motor which was built for direct driven electric wheelchair application. Further, the block diagram of this in-wheel motor including the supply circuit is built in Simulink to observe the motor dynamics in practical scenario.

The results from finite element analysis obtained for all the three PMBL motors indicate a good agreement with the analytical approach. For twin-rotor PMBL motors of diameter 334mm, length 82.5mm with a magnetic loading of 0.7T and current loading of 41.5A-turns/mm, the error between the express comparison method and simulation results, in computation of torque ratio, is about 1.5%. With respect to the single-rotor cylindrical motor with slotless stator, the express method for AFTR PMBL motor yielded an error of 4.9% and that of an RFTR PMBL motor resulted in an error of -7.6%. Moreover, experimental validation of the wheelchair motor gave almost the same torque and similar dynamic performance as the FEM and Simulink models respectively.



Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Mendrela, Ernest A.