Doctor of Philosophy (PhD)


Chemical Engineering

Document Type



Abstract Pore-scale network modeling using 3D X-ray computed tomographic images (digital rock technology) has become integral to both research and commercial simulations in recent years. While this technology provides tremendous insight into pore-scale behavior, computational methods for integrating the results into practical, continuum-scale models remain fairly primitive. The general approach is to run pore-scale models and continuum models sequentially, where macroscopic parameters are simulated using the pore-scale models and then used in the continuum models as if they have been obtained from laboratory experiments. While a sequential coupling approach is appealing in some cases, an inability to run the two models concurrently (exchanging parameters and boundary conditions in real numerical time) will prevent using pore-scale image-based modeling to its full potential. In this work, an algorithm for direct coupling of a dynamic pore-network model for multiphase flow with a traditional continuum-scale simulator is presented. The ability to run the two models concurrently is made possible by a novel dynamic pore-network model that allows simultaneous injection of immiscible fluids under either transient or steady-state conditions. The dynamic network algorithm can simulate both drainage and imbibition. Consequently, the network algorithm can be used to model a complete time-dependent injection process that comprises a steady-state relative permeability test, and also allows for coupling to a continuum model via exchange of information between the two models. Results also include the sensitivity analysis of relative permeability to pore-level physics and simulation algorithms. A concurrent multiscale modeling approach is presented. It allows the pore-scale properties to evolve naturally during the simulated reservoir time step and provide a unique method for reconciling the dramatically different time and length scales across the coupled models. The model is tested for examples associated with oil production and groundwater transport in which relative permeability depends on flowrate, thus demonstrating a situation that cannot be modeled using a traditional approach. This work is significant because it represents a fundamental change in the way we might obtain continuum-scale parameters in a reservoir simulation.



Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Thompson, Karsten