Doctor of Philosophy (PhD)


Physics and Astronomy

Document Type



In this dissertation we begin with a brief introduction to quantum optics concentrating on the topics of the noise of quantum optical states, quantum estimation theory, quantum interferometry and the atom-field interaction. This background is necessary for understanding the discussions in later chapters. In particular, quantum interferometry, which is optical interferometry when the light source is a quantum mechanical state, plays a central role in this dissertation. In Chapter 2 we discuss the phase estimation sensitivity of quantum metrology when photon loss is present. In Chapter 3 we extend the discussion to include the phase fluctuation of the system caused by the environment. We model our metrological system with the Mach-Zehnder interferometer (MZI) and use a light field in the symmetric number-path entangled state as the source. In both chapters we use the parity operator as the detection scheme and show that it is optimal under pure dephasing. In Chapter 4 we discuss the application of quantum optical states in remote sensing and propose a new scheme for a quantum radar. Again, our scheme consists of a MZI and a coherent light source. It is shown that using only coherent states of light and quantum homodyne detection, super-resolving ranging and angle determination are achievable. Chapter 5 is devoted to the generation of a super-resolving single-photon number-path entangled state which may serve as a proof-of-principle prototype for quantum lithography. The repeated implementation of MZIs is shown to be able to remove photons coherently from both modes of a symmetric number-path entangled state with arbitrarily high photon number. Lastly, in Chapter 6 we introduce the phenomenon known as polarization self-rotation and discuss its potential in generating a squeezed vacuum state, which has a huge impact in quantum interferometry.



Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Dowling, Jonathan